AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Static Application Security Testing (SAST) tools are integral to modern DevSecOps pipelines, yet tools like CodeQL, Semgrep, and SonarQube remain fundamentally constrained: they require expert-crafted queries, generate excessive false positives, and detect only predefined vulnerability patterns. Recent work has explored augmenting SAST with Large Language Models (LLMs), but these approaches typically use LLMs to triage existing tool outputs rather than to reason about vulnerability semantics directly. We introduce QRS (Query, Review, Sanitize), a neuro-symbolic framework that inverts this paradigm. Rather than filtering results from static rules, QRS employs three autonomous agents that generate CodeQL queries from a structured schema definition and few-shot examples, then validate findings through semantic reasoning and automated exploit synthesis. This architecture enables QRS to discover vulnerability classes beyond predefined patterns while substantially reducing false positives. We evaluate QRS on full Python packages rather than isolated snippets. In 20 historical CVEs in popular PyPI libraries, QRS achieves 90.6
