AIにより推定されたラベル
量子化とプライバシー プライバシー保護フレームワーク 統計的検定
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Quantum Machine Learning (QML) promises significant computational advantages, but preserving training data privacy remains challenging. Classical approaches like differentially private stochastic gradient descent (DP-SGD) add noise to gradients but fail to exploit the unique properties of quantum gradient estimation. In this work, we introduce the Differentially Private Parameter-Shift Rule (Q-ShiftDP), the first privacy mechanism tailored to QML. By leveraging the inherent boundedness and stochasticity of quantum gradients computed via the parameter-shift rule, Q-ShiftDP enables tighter sensitivity analysis and reduces noise requirements. We combine carefully calibrated Gaussian noise with intrinsic quantum noise to provide formal privacy and utility guarantees, and show that harnessing quantum noise further improves the privacy-utility trade-off. Experiments on benchmark datasets demonstrate that Q-ShiftDP consistently outperforms classical DP methods in QML.
