AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
While machine learning is vulnerable to adversarial examples, it still lacks systematic procedures and tools for evaluating its security in different application contexts. In this article, we discuss how to develop automated and scalable security evaluations of machine learning using practical attacks, reporting a use case on Windows malware detection.