AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Large Language Models (LLMs) have exhibited remarkable capabilities but remain vulnerable to jailbreaking attacks, which can elicit harmful content from the models by manipulating the input prompts. Existing black-box jailbreaking techniques primarily rely on static prompts crafted with a single, non-adaptive strategy, or employ rigid combinations of several underperforming attack methods, which limits their adaptability and generalization. To address these limitations, we propose MAJIC, a Markovian adaptive jailbreaking framework that attacks black-box LLMs by iteratively combining diverse innovative disguise strategies. MAJIC first establishes a “Disguise Strategy Pool” by refining existing strategies and introducing several innovative approaches. To further improve the attack performance and efficiency, MAJIC formulate the sequential selection and fusion of strategies in the pool as a Markov chain. Under this formulation, MAJIC initializes and employs a Markov matrix to guide the strategy composition, where transition probabilities between strategies are dynamically adapted based on attack outcomes, thereby enabling MAJIC to learn and discover effective attack pathways tailored to the target model. Our empirical results demonstrate that MAJIC significantly outperforms existing jailbreak methods on prominent models such as GPT-4o and Gemini-2.0-flash, achieving over 90% attack success rate with fewer than 15 queries per attempt on average.