AIにより推定されたラベル
プライバシー保護メカニズム プライバシー問題 データセット評価
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Cloud computing is emerging as a revolutionary computing paradigm, while security and privacy become major concerns in the cloud scenario. For which Searchable Encryption (SE) technology is proposed to support efficient retrieval of encrypted data. However, the absence of lightweight ranked search with higher search quality in a harsh adversary model is still a typical shortage in existing SE schemes. In this paper, we propose a novel SE scheme called LRSE which firstly integrates machine learning methods into the framework of SE and combines local and global representations of encrypted cloud data to achieve the above design goals. In LRSE, we employ an improved secure kNN scheme to guarantee sufficient privacy protection. Our detailed security analysis shows that LRSE satisfies our formulated privacy requirements. Extensive experiments performed on benchmark datasets demonstrate that LRSE indeed achieves state-of-the-art search quality with lowest system cost.