AIにより推定されたラベル
プライバシー保護技術 データプライバシー評価 CO2識別モデル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
There is a constant trade-off between the utility of the data collected and processed by the many systems forming the Internet of Things (IoT) revolution and the privacy concerns of the users living in the spaces hosting these sensors. Privacy models, such as the SITA (Spatial, Identity, Temporal, and Activity) model, can help address this trade-off. In this paper, we focus on the problem of CO2 prediction, which is crucial for health monitoring but can be used to monitor occupancy, which might reveal some private information. We apply a number of transformations on a real dataset from a Smart Building to simulate different SITA configurations on the collected data. We use the transformed data with multiple Machine Learning (ML) techniques to analyse the performance of the models to predict CO2 levels. Our results show that, for different algorithms, different SITA configurations do not make one algorithm perform better or worse than others, compared to the baseline data; also, in our experiments, the temporal dimension was particularly sensitive, with scores decreasing up to 18.9% between the original and the transformed data. The results can be useful to show the effect of different levels of data privacy on the data utility of IoT applications, and can also help to identify which parameters are more relevant for those systems so that higher privacy settings can be adopted while data utility is still preserved.