Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability

AIにより推定されたラベル
Abstract

In recent years, the topic of explainable machine learning (ML) has been extensively researched. Up until now, this research focused on regular ML users use-cases such as debugging a ML model. This paper takes a different posture and show that adversaries can leverage explainable ML to bypass multi-feature types malware classifiers. Previous adversarial attacks against such classifiers only add new features and not modify existing ones to avoid harming the modified malware executable’s functionality. Current attacks use a single algorithm that both selects which features to modify and modifies them blindly, treating all features the same. In this paper, we present a different approach. We split the adversarial example generation task into two parts: First we find the importance of all features for a specific sample using explainability algorithms, and then we conduct a feature-specific modification, feature-by-feature. In order to apply our attack in black-box scenarios, we introduce the concept of transferability of explainability, that is, applying explainability algorithms to different classifiers using different features subsets and trained on different datasets still result in a similar subset of important features. We conclude that explainability algorithms can be leveraged by adversaries and thus the advocates of training more interpretable classifiers should consider the trade-off of higher vulnerability of those classifiers to adversarial attacks.

タイトルとURLをコピーしました