From Assistants to Adversaries: Exploring the Security Risks of Mobile LLM Agents

AIにより推定されたラベル
Abstract

The growing adoption of large language models (LLMs) has led to a new paradigm in mobile computing–LLM-powered mobile AI agents–capable of decomposing and automating complex tasks directly on smartphones. However, the security implications of these agents remain largely unexplored. In this paper, we present the first comprehensive security analysis of mobile LLM agents, encompassing three representative categories: System-level AI Agents developed by original equipment manufacturers (e.g., YOYO Assistant), Third-party Universal Agents (e.g., Zhipu AI AutoGLM), and Emerging Agent Frameworks (e.g., Alibaba Mobile Agent). We begin by analyzing the general workflow of mobile agents and identifying security threats across three core capability dimensions: language-based reasoning, GUI-based interaction, and system-level execution. Our analysis reveals 11 distinct attack surfaces, all rooted in the unique capabilities and interaction patterns of mobile LLM agents, and spanning their entire operational lifecycle. To investigate these threats in practice, we introduce AgentScan, a semi-automated security analysis framework that systematically evaluates mobile LLM agents across all 11 attack scenarios. Applying AgentScan to nine widely deployed agents, we uncover a concerning trend: every agent is vulnerable to targeted attacks. In the most severe cases, agents exhibit vulnerabilities across eight distinct attack vectors. These attacks can cause behavioral deviations, privacy leakage, or even full execution hijacking. Based on these findings, we propose a set of defensive design principles and practical recommendations for building secure mobile LLM agents. Our disclosures have received positive feedback from two major device vendors. Overall, this work highlights the urgent need for standardized security practices in the fast-evolving landscape of LLM-driven mobile automation.

タイトルとURLをコピーしました