AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Sensor data-based recognition systems are widely used in various applications, such as gait-based authentication and human activity recognition (HAR). Modern wearable and smart devices feature various built-in Inertial Measurement Unit (IMU) sensors, and such sensor-based measurements can be fed to a machine learning-based model to train and classify human activities. While deep learning-based models have proven successful in classifying human activity and gestures, they pose various security risks. In our paper, we discuss a novel dynamic trigger-generation technique for performing black-box adversarial attacks on sensor data-based IoT systems. Our empirical analysis shows that the attack is successful on various datasets and classifier models with minimal perturbation on the input data. We also provide a detailed comparative analysis of performance and stealthiness to various other poisoning techniques found in backdoor attacks. We also discuss some adversarial defense mechanisms and their impact on the effectiveness of our trigger-generation technique.
