AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
RISC-V processors are becoming ubiquitous in critical applications, but their susceptibility to microarchitectural side-channel attacks is a serious concern. Detection of microarchitectural attacks in RISC-V is an emerging research topic that is relatively underexplored, compared to x86 and ARM. The first line of work to detect flush+fault-based microarchitectural attacks in RISC-V leverages Machine Learning (ML) models, yet it leaves several practical aspects that need further investigation. To address overlooked issues, we leveraged gem5 and propose a new detection method combining statistical preprocessing and association rule mining having reconfiguration capabilities to generalize the detection method for any microarchitectural attack. The performance comparison with state-of-the-art reveals that the proposed detection method achieves up to 5.15 recall under the cryptographic, computational, and memory-intensive workloads alongside its flexibility to detect new variant of flush+fault attack. Moreover, as the attack detection relies on association rules, their human-interpretable nature provides deep insight to understand microarchitectural behavior during the execution of attack and benign applications.