AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
With the increasingly rapid development of new malicious computer software by bad faith actors, both commercial and research-oriented antivirus detectors have come to make greater use of machine learning tactics to identify such malware as harmful before end users are exposed to their effects. This, in turn, has spurred the development of tools that allow for known malware to be manipulated such that they can evade being classified as dangerous by these machine learning-based detectors, while retaining their malicious functionality. These manipulations function by applying a set of changes that can be made to Windows programs that result in a different file structure and signature without altering the software’s capabilities. Various proposals have been made for the most effective way of applying these alterations to input malware to deceive static malware detectors; the purpose of this research is to examine these proposals and test their implementations to determine which tactics tend to generate the most successful attacks.