AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Multi-modal large language models (MLLMs), capable of processing text, images, and audio, have been widely adopted in various AI applications. However, recent MLLMs integrating images and text remain highly vulnerable to coordinated jailbreaks. Existing defenses primarily focus on the text, lacking robust multi-modal protection. As a result, studies indicate that MLLMs are more susceptible to malicious or unsafe instructions, unlike their text-only counterparts. In this paper, we proposed DefenSee, a robust and lightweight multi-modal black-box defense technique that leverages image variants transcription and cross-modal consistency checks, mimicking human judgment. Experiments on popular multi-modal jailbreak and benign datasets show that DefenSee consistently enhances MLLM robustness while better preserving performance on benign tasks compared to SOTA defenses. It reduces the ASR of jailbreak attacks to below 1.70
