AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The widespread lack of broad source code verification on blockchain explorers such as Etherscan, where despite 78,047,845 smart contracts deployed on Ethereum (as of May 26, 2025), a mere 767,520 (< 1 a severe impediment to blockchain security. This opacity necessitates the automated semantic analysis of on-chain smart contract bytecode, a fundamental research challenge with direct implications for identifying vulnerabilities and understanding malicious behavior. Prevailing decompilers struggle to reverse bytecode in a readable manner, often yielding convoluted code that critically hampers vulnerability analysis and thwarts efforts to dissect contract functionalities for security auditing. This paper addresses this challenge by introducing a pioneering decompilation pipeline that, for the first time, successfully leverages Large Language Models (LLMs) to transform Ethereum Virtual Machine (EVM) bytecode into human-readable and semantically faithful Solidity code. Our novel methodology first employs rigorous static program analysis to convert bytecode into a structured three-address code (TAC) representation. This intermediate representation then guides a Llama-3.2-3B model, specifically fine-tuned on a comprehensive dataset of 238,446 TAC-to-Solidity function pairs, to generate high-quality Solidity. This approach uniquely recovers meaningful variable names, intricate control flow, and precise function signatures. Our extensive empirical evaluation demonstrates a significant leap beyond traditional decompilers, achieving an average semantic similarity of 0.82 with original source and markedly superior readability. The practical viability and effectiveness of our research are demonstrated through its implementation in a publicly accessible system, available at https://evmdecompiler.com.