AIにより推定されたラベル
暗号化手法 セキュアな通信チャネル プライバシー保護アルゴリズム
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Homomorphic encryption (HE) is a promising cryptographic technique for enabling secure collaborative machine learning in the cloud. However, support for homomorphic computation on ciphertexts under multiple keys is inefficient. Current solutions often require key setup before any computation or incur large ciphertext size (at best, grow linearly to the number of involved keys). In this paper, we proposed a new approach that leverages threshold and multi-key HE to support computations on ciphertexts under different keys. Our new approach removes the need for key setup between each client and the set of model owners. At the same time, this approach reduces the number of encrypted models to be offloaded to the cloud evaluator, and the ciphertext size with a dimension reduction from (N+1)x2 to 2×2. We present the details of each step and discuss the complexity and security of our approach.