AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
We theoretically analyse the limits of robustness to test-time adversarial and noisy examples in classification. Our work focuses on deriving bounds which uniformly apply to all classifiers (i.e all measurable functions from features to labels) for a given problem. Our contributions are two-fold. (1) We use optimal transport theory to derive variational formulae for the Bayes-optimal error a classifier can make on a given classification problem, subject to adversarial attacks. The optimal adversarial attack is then an optimal transport plan for a certain binary cost-function induced by the specific attack model, and can be computed via a simple algorithm based on maximal matching on bipartite graphs. (2) We derive explicit lower-bounds on the Bayes-optimal error in the case of the popular distance-based attacks. These bounds are universal in the sense that they depend on the geometry of the class-conditional distributions of the data, but not on a particular classifier. Our results are in sharp contrast with the existing literature, wherein adversarial vulnerability of classifiers is derived as a consequence of nonzero ordinary test error.