AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Large language models (LLMs) have revolutionized software development through AI-assisted coding tools, enabling developers with limited programming expertise to create sophisticated applications. However, this accessibility extends to malicious actors who may exploit these powerful tools to generate harmful software. Existing jailbreaking research primarily focuses on general attack scenarios against LLMs, with limited exploration of malicious code generation as a jailbreak target. To address this gap, we propose SPELL, a comprehensive testing framework specifically designed to evaluate the weakness of security alignment in malicious code generation. Our framework employs a time-division selection strategy that systematically constructs jailbreaking prompts by intelligently combining sentences from a prior knowledge dataset, balancing exploration of novel attack patterns with exploitation of successful techniques. Extensive evaluation across three advanced code models (GPT-4.1, Claude-3.5, and Qwen2.5-Coder) demonstrates SPELL’s effectiveness, achieving attack success rates of 83.75
