AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
This work explores backdoor attacks for automatic speech recognition systems where we inject inaudible triggers. By doing so, we make the backdoor attack challenging to detect for legitimate users, and thus, potentially more dangerous. We conduct experiments on two versions of a speech dataset and three neural networks and explore the performance of our attack concerning the duration, position, and type of the trigger. Our results indicate that less than 1 100 result in highly successful attacks. However, since our trigger is inaudible, it can be as long as possible without raising any suspicions making the attack more effective. Finally, we conducted our attack in actual hardware and saw that an adversary could manipulate inference in an Android application by playing the inaudible trigger over the air.