AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Privacy preserving machine learning is an active area of research usually relying on techniques such as homomorphic encryption or secure multiparty computation. Recent novel encryption techniques for performing machine learning using deep neural nets on images have recently been proposed by Tanaka and Sirichotedumrong, Kinoshita, and Kiya. We present new chosen-plaintext and ciphertext-only attacks against both of these proposed image encryption schemes and demonstrate the attacks’ effectiveness on several examples.