Labels Predicted by AI
LLM Performance Evaluation Watermarking Algorithm Design
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
As large language models (LLMs) generate increasingly human-like text, watermarking offers a promising solution for reliable attribution beyond mere detection. While multi-bit watermarking enables richer provenance encoding, existing methods largely extend zero-bit schemes through seed-driven steering, leading to indirect information flow, limited effective capacity, and suboptimal decoding. In this paper, we propose WorldCup, a multi-bit watermarking framework for LLMs that treats sampling as a natural communication channel and embeds message bits directly into token selection via a hierarchical competition mechanism guided by complementary signals. Moreover, WorldCup further adopts entropy-aware modulation to preserve generation quality and supports robust message recovery through confidence-aware decoding. Comprehensive experiments show that WorldCup achieves a strong balance across capacity, detectability, robustness, text quality, and decoding efficiency, consistently outperforming prior baselines and laying a solid foundation for future LLM watermarking studies.
