Labels Predicted by AI
Uncertainty Assessment Risk Management Decision-Making Dynamics
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The proliferation of autonomous AI agents within enterprise environments introduces a critical security challenge: managing access control for emergent, novel tasks for which no predefined policies exist. This paper introduces an advanced security framework that extends the Task-Based Access Control (TBAC) model by using a Large Language Model (LLM) as an autonomous, risk-aware judge. This model makes access control decisions not only based on an agent’s intent but also by explicitly considering the inherent risk associated with target resources and the LLM’s own model uncertainty in its decision-making process. When an agent proposes a novel task, the LLM judge synthesizes a just-in-time policy while also computing a composite risk score for the task and an uncertainty estimate for its own reasoning. High-risk or high-uncertainty requests trigger more stringent controls, such as requiring human approval. This dual consideration of external risk and internal confidence allows the model to enforce a more robust and adaptive version of the principle of least privilege, paving the way for safer and more trustworthy autonomous systems.