Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
We give a new algorithm for approximating the Discrete Fourier transform of an approximately sparse signal that has been corrupted by worst-case L0 noise, namely a bounded number of coordinates of the signal have been corrupted arbitrarily. Our techniques generalize to a wide range of linear transformations that are used in data analysis such as the Discrete Cosine and Sine transforms, the Hadamard transform, and their high-dimensional analogs. We use our algorithm to successfully defend against well known L0 adversaries in the setting of image classification. We give experimental results on the Jacobian-based Saliency Map Attack (JSMA) and the Carlini Wagner (CW) L0 attack on the MNIST and Fashion-MNIST datasets as well as the Adversarial Patch on the ImageNet dataset.