Labels Predicted by AI
Differential Privacy Efficiency of Distributed Learning Characteristics of RDP
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Decentralized learning enables distributed agents to collaboratively train a shared machine learning model without a central server, through local computation and peer-to-peer communication. Although each agent retains its dataset locally, sharing local models can still expose private information about the local training datasets to adversaries. To mitigate privacy attacks, a common strategy is to inject random artificial noise at each agent before exchanging local models between neighbors. However, this often leads to utility degradation due to the negative effects of cumulated artificial noise on the learning algorithm. In this work, we introduce CorN-DSGD, a novel covariance-based framework for generating correlated privacy noise across agents, which unifies several state-of-the-art methods as special cases. By leveraging network topology and mixing weights, CorN-DSGD optimizes the noise covariance to achieve network-wide noise cancellation. Experimental results show that CorN-DSGD cancels more noise than existing pairwise correlation schemes, improving model performance under formal privacy guarantees.