Labels Predicted by AI
Prompt leaking Model Extraction Attack
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
In-context learning (ICL) has become a powerful, data-efficient paradigm for text classification using large language models. However, its robustness against realistic adversarial threats remains largely unexplored. We introduce ICL-Evader, a novel black-box evasion attack framework that operates under a highly practical zero-query threat model, requiring no access to model parameters, gradients, or query-based feedback during attack generation. We design three novel attacks, Fake Claim, Template, and Needle-in-a-Haystack, that exploit inherent limitations of LLMs in processing in-context prompts. Evaluated across sentiment analysis, toxicity, and illicit promotion tasks, our attacks significantly degrade classifier performance (e.g., achieving up to 95.3
