Labels Predicted by AI
Privacy Analysis Code Obfuscation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The success of large language models for code relies on vast amounts of code data, including public open-source repositories, such as GitHub, and private, confidential code from companies. This raises concerns about intellectual property compliance and the potential unauthorized use of license-restricted code. While membership inference (MI) techniques have been proposed to detect such unauthorized usage, their effectiveness can be undermined by semantically equivalent code transformation techniques, which modify code syntax while preserving semantic. In this work, we systematically investigate whether semantically equivalent code transformation rules might be leveraged to evade MI detection. The results reveal that model accuracy drops by only 1.5
