Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
In a model extraction attack, an adversary steals a copy of a remotely deployed machine learning model, given oracle prediction access. We taxonomize model extraction attacks around two objectives: *accuracy*, i.e., performing well on the underlying learning task, and *fidelity*, i.e., matching the predictions of the remote victim classifier on any input. To extract a high-accuracy model, we develop a learning-based attack exploiting the victim to supervise the training of an extracted model. Through analytical and empirical arguments, we then explain the inherent limitations that prevent any learning-based strategy from extracting a truly high-fidelity model—i.e., extracting a functionally-equivalent model whose predictions are identical to those of the victim model on all possible inputs. Addressing these limitations, we expand on prior work to develop the first practical functionally-equivalent extraction attack for direct extraction (i.e., without training) of a model’s weights. We perform experiments both on academic datasets and a state-of-the-art image classifier trained with 1 billion proprietary images. In addition to broadening the scope of model extraction research, our work demonstrates the practicality of model extraction attacks against production-grade systems.