Elevating Intrusion Detection and Security Fortification in Intelligent Networks through Cutting-Edge Machine Learning Paradigms

Labels Predicted by AI
Abstract

The proliferation of IoT devices and their reliance on Wi-Fi networks have introduced significant security vulnerabilities, particularly the KRACK and Kr00k attacks, which exploit weaknesses in WPA2 encryption to intercept and manipulate sensitive data. Traditional IDS using classifiers face challenges such as model overfitting, incomplete feature extraction, and high false positive rates, limiting their effectiveness in real-world deployments. To address these challenges, this study proposes a robust multiclass machine learning based intrusion detection framework. The methodology integrates advanced feature selection techniques to identify critical attributes, mitigating redundancy and enhancing detection accuracy. Two distinct ML architectures are implemented: a baseline classifier pipeline and a stacked ensemble model combining noise injection, Principal Component Analysis (PCA), and meta learning to improve generalization and reduce false positives. Evaluated on the AWID3 data set, the proposed ensemble architecture achieves superior performance, with an accuracy of 98

Copied title and URL