Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Smart contracts are susceptible to being exploited by attackers, especially when facing real-world vulnerabilities. To mitigate this risk, developers often rely on third-party audit services to identify potential vulnerabilities before project deployment. Nevertheless, repairing the identified vulnerabilities is still complex and labor-intensive, particularly for developers lacking security expertise. Moreover, existing pattern-based repair tools mostly fail to address real-world vulnerabilities due to their lack of high-level semantic understanding. To fill this gap, we propose ContractTinker, a Large Language Models (LLMs)-empowered tool for real-world vulnerability repair. The key insight is our adoption of the Chain-of-Thought approach to break down the entire generation task into sub-tasks. Additionally, to reduce hallucination, we integrate program static analysis to guide the LLM. We evaluate ContractTinker on 48 high-risk vulnerabilities. The experimental results show that among the patches generated by ContractTinker, 23 (48 that fix the vulnerabilities, while 10 (21 A video of ContractTinker is available at https://youtu.be/HWFVi-YHcPE.