Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The increasing popularity of the federated learning (FL) framework due to its success in a wide range of collaborative learning tasks also induces certain security concerns. Among many vulnerabilities, the risk of Byzantine attacks is of particular concern, which refers to the possibility of malicious clients participating in the learning process. Hence, a crucial objective in FL is to neutralize the potential impact of Byzantine attacks and to ensure that the final model is trustable. It has been observed that the higher the variance among the clients’ models/updates, the more space there is for Byzantine attacks to be hidden. As a consequence, by utilizing momentum, and thus, reducing the variance, it is possible to weaken the strength of known Byzantine attacks. The centered clipping (CC) framework has further shown that the momentum term from the previous iteration, besides reducing the variance, can be used as a reference point to neutralize Byzantine attacks better. In this work, we first expose vulnerabilities of the CC framework, and introduce a novel attack strategy that can circumvent the defences of CC and other robust aggregators and reduce their test accuracy up to image classification tasks. Then, we propose a new robust and fast defence mechanism that is effective against the proposed and other existing Byzantine attacks.