LLMAC: A Global and Explainable Access Control Framework with Large Language Model

Labels Predicted by AI
Abstract

Today’s business organizations need access control systems that can handle complex, changing security requirements that go beyond what traditional methods can manage. Current approaches, such as Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC), and Discretionary Access Control (DAC), were designed for specific purposes. They cannot effectively manage the dynamic, situation-dependent workflows that modern systems require. In this research, we introduce LLMAC, a new unified approach using Large Language Models (LLMs) to combine these different access control methods into one comprehensive, understandable system. We used an extensive synthetic dataset that represents complex real-world scenarios, including policies for ownership verification, version management, workflow processes, and dynamic role separation. Using Mistral 7B, our trained LLM model achieved outstanding results with 98.5

Copied title and URL