Labels Predicted by AI
Model Extraction Attack Security of Code Generation Backdoor Detection
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Large language models (LLMs) for Verilog code generation are increasingly adopted in hardware design, yet remain vulnerable to backdoor attacks where adversaries inject malicious triggers during training to induce vulnerable hardware designs. Unlike patchable software vulnerabilities, hardware trojans become irreversible once fabricated, making remediation extremely costly or impossible. Existing active defenses require access to training data, impractical for third-party LLM users, while passive defenses struggle against semantically stealthy triggers that naturally blend into design specifications. In this paper, we hypothesize that under the requirements of both effectiveness and stealthiness, attackers are strongly biased toward embedding triggers in non-functional requirements (e.g., style modifiers, quality descriptors) rather than functional specifications that determine hardware behavior. Exploiting this insight, we propose Semantic Consensus Decoding (SCD), an inference-time passive defense with two key components: (1) functional requirement extraction that identifies essential requirements from user specifications, and (2) consensus decoding that adaptively fuses output distributions based on full user specifications and extracted functional requirements. When these distributions diverge significantly, SCD automatically suppresses suspicious components. Extensive experiments with three representative backdoor attacks demonstrate that SCD reduces average attack success rate from 89
