Labels Predicted by AI
Federated Learning Privacy protection framework Robustness Evaluation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Ensuring resilience to Byzantine clients while maintaining the privacy of the clients’ data is a fundamental challenge in federated learning (FL). When the clients’ data is homogeneous, suitable countermeasures were studied from an information-theoretic perspective utilizing secure aggregation techniques while ensuring robust aggregation of the clients’ gradients. However, the countermeasures used fail when the clients’ data is heterogeneous. Suitable pre-processing techniques, such as nearest neighbor mixing, were recently shown to enhance the performance of those countermeasures in the heterogeneous setting. Nevertheless, those pre-processing techniques cannot be applied with the introduced privacy-preserving mechanisms. We propose a multi-stage method encompassing a careful co-design of verifiable secret sharing, secure aggregation, and a tailored symmetric private information retrieval scheme to achieve information-theoretic privacy guarantees and Byzantine resilience under data heterogeneity. We evaluate the effectiveness of our scheme on a variety of attacks and show how it outperforms the previously known techniques. Since the communication overhead of secure aggregation is non-negligible, we investigate the interplay with zero-order estimation methods that reduce the communication cost in state-of-the-art FL tasks and thereby make private aggregation scalable.