Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The adaptability of the convolutional neural network (CNN) technique for aerodynamic meta-modeling tasks is probed in this work. The primary objective is to develop suitable CNN architecture for variable flow conditions and object geometry, in addition to identifying a sufficient data preparation process. Multiple CNN structures were trained to learn the lift coefficients of the airfoils with a variety of shapes in multiple flow Mach numbers, Reynolds numbers, and diverse angles of attack. This is conducted to illustrate the concept of the technique. A multi-layered perceptron (MLP) is also used for the training sets. The MLP results are compared with that of the CNN results. The newly proposed meta-modeling concept has been found to be comparable with the MLP in learning capability; and more importantly, our CNN model exhibits a competitive prediction accuracy with minimal constraints in a geometric representation.