Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Dirichlet-based uncertainty (DBU) models are a recent and promising class of uncertainty-aware models. DBU models predict the parameters of a Dirichlet distribution to provide fast, high-quality uncertainty estimates alongside with class predictions. In this work, we present the first large-scale, in-depth study of the robustness of DBU models under adversarial attacks. Our results suggest that uncertainty estimates of DBU models are not robust w.r.t. three important tasks: (1) indicating correctly and wrongly classified samples; (2) detecting adversarial examples; and (3) distinguishing between in-distribution (ID) and out-of-distribution (OOD) data. Additionally, we explore the first approaches to make DBU models more robust. While adversarial training has a minor effect, our median smoothing based approach significantly increases robustness of DBU models.