Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
We consider coverless steganography where a Large Language Model (LLM) drives an arithmetic coding decoder to generate stego-texts. An efficient method should embed secret message bits in as few language tokens as possible, while still keeping the stego-text natural and fluent. We show that on the individual token level, this problem is mathematically equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the KL divergence between the chosen probability distribution and the original distribution given by the LLM. A closed-form solution is provided for the optimization problem, which can be computed efficiently. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The combination of the optimized distribution with other sequence-level selection heuristics to further enhance the efficiency and reliability is studied.