AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
In the past decade, a lot of progress has been made in the design and evaluation of logic locking; a premier technique to safeguard the integrity of integrated circuits throughout the electronics supply chain. However, the widespread proliferation of machine learning has recently introduced a new pathway to evaluating logic locking schemes. This paper summarizes the recent developments in logic locking attacks and countermeasures at the frontiers of contemporary machine learning models. Based on the presented work, the key takeaways, opportunities, and challenges are highlighted to offer recommendations for the design of next-generation logic locking.