AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
This research recasts ransomware detection using performance monitoring and statistical machine learning. The work builds a test environment with 41 input variables to label and compares three computing states: idle, encryption and compression. A common goal of this behavioral detector seeks to anticipate and short-circuit the final step of hard-drive locking with encryption and the demand for payment to return the file system to its baseline. Comparing machine learning techniques, linear regression outperforms random forest, decision trees, and support vector machines (SVM). All algorithms classified the 3 possible classes (idle, encryption, and compression) with greater than 91 accuracy.