AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Solving combinatorial optimization (CO) on graphs is among the fundamental tasks for upper-stream applications in data mining, machine learning and operations research. Despite the inherent NP-hard challenge for CO, heuristics, branch-and-bound, learning-based solvers are developed to tackle CO problems as accurately as possible given limited time budgets. However, a practical metric for the sensitivity of CO solvers remains largely unexplored. Existing theoretical metrics require the optimal solution which is infeasible, and the gradient-based adversarial attack metric from deep learning is not compatible with non-learning solvers that are usually non-differentiable. In this paper, we develop the first practically feasible robustness metric for general combinatorial optimization solvers. We develop a no worse optimal cost guarantee thus do not require optimal solutions, and we tackle the non-differentiable challenge by resorting to black-box adversarial attack methods. Extensive experiments are conducted on 14 unique combinations of solvers and CO problems, and we demonstrate that the performance of state-of-the-art solvers like Gurobi can degenerate by over 20 time limit bound on the hard instances discovered by our robustness metric, raising concerns about the robustness of combinatorial optimization solvers.