Towards Real-World Industrial-Scale Verification: LLM-Driven Theorem Proving on seL4

AIにより推定されたラベル
Abstract

Formal methods (FM) are reliable but costly to apply, often requiring years of expert effort in industrial-scale projects such as seL4, especially for theorem proving. Recent advances in large language models (LLMs) have made automated theorem proving increasingly feasible. However, most prior work focuses on mathematics-oriented benchmarks such as miniF2F, with limited evaluation on real-world verification projects. The few studies that consider industrial-scale verification mostly rely on closed-source models with hundreds of billions of parameters, which cannot be locally deployed and incur substantial usage costs. In this paper, we propose AutoReal, an LLM-driven theorem proving method for real-world industrial-scale systems with support for lightweight local deployment. We evaluate AutoReal on the seL4-Isabelle verification project as a representative and challenging case study. AutoReal incorporates two key improvements: (1) chain-of-thought (CoT)-based proof training, which teaches the LLM the reasoning behind proof steps and enables step-wise explanations alongside proofs, and (2) context augmentation, which leverages proof context from the project to enhance LLM-driven proving. Based on the AutoReal methodology, we fine-tune a base model to obtain AutoReal-Prover, a compact 7B-scale prover for industrial-scale theorem proving. AutoReal-Prover achieves a 51.67

タイトルとURLをコピーしました