AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Chat template is a common technique used in the training and inference stages of Large Language Models (LLMs). It can transform input and output data into role-based and templated expressions to enhance the performance of LLMs. However, this also creates a breeding ground for novel attack surfaces. In this paper, we first reveal that the customizability of chat templates allows an attacker who controls the template to inject arbitrary strings into the system prompt without the user’s notice. Building on this, we propose a training-free backdoor attack, termed BadTemplate. Specifically, BadTemplate inserts carefully crafted malicious instructions into the high-priority system prompt, thereby causing the target LLM to exhibit persistent backdoor behaviors. BadTemplate outperforms traditional backdoor attacks by embedding malicious instructions directly into the system prompt, eliminating the need for model retraining while achieving high attack effectiveness with minimal cost. Furthermore, its simplicity and scalability make it easily and widely deployed in real-world systems, raising serious risks of rapid propagation, economic damage, and large-scale misinformation. Furthermore, detection by major third-party platforms HuggingFace and LLM-as-a-judge proves largely ineffective against BadTemplate. Extensive experiments conducted on 5 benchmark datasets across 6 open-source and 3 closed-source LLMs, compared with 3 baselines, demonstrate that BadTemplate achieves up to a 100
