Human Society-Inspired Approaches to Agentic AI Security: The 4C Framework

AIにより推定されたラベル
Abstract

AI is moving from domain-specific autonomy in closed, predictable settings to large-language-model-driven agents that plan and act in open, cross-organizational environments. As a result, the cybersecurity risk landscape is changing in fundamental ways. Agentic AI systems can plan, act, collaborate, and persist over time, functioning as participants in complex socio-technical ecosystems rather than as isolated software components. Although recent work has strengthened defenses against model and pipeline level vulnerabilities such as prompt injection, data poisoning, and tool misuse, these system centric approaches may fail to capture risks that arise from autonomy, interaction, and emergent behavior. This article introduces the 4C Framework for multi-agent AI security, inspired by societal governance. It organizes agentic risks across four interdependent dimensions: Core (system, infrastructure, and environmental integrity), Connection (communication, coordination, and trust), Cognition (belief, goal, and reasoning integrity), and Compliance (ethical, legal, and institutional governance). By shifting AI security from a narrow focus on system-centric protection to the broader preservation of behavioral integrity and intent, the framework complements existing AI security strategies and offers a principled foundation for building agentic AI systems that are trustworthy, governable, and aligned with human values.

タイトルとURLをコピーしました