AIにより推定されたラベル
プロンプトインジェクション 敵対的攻撃検出 大規模言語モデル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Jailbreak attacks pose significant threats to large language models (LLMs), enabling attackers to bypass safeguards. However, existing reactive defense approaches struggle to keep up with the rapidly evolving multi-turn jailbreaks, where attackers continuously deepen their attacks to exploit vulnerabilities. To address this critical challenge, we propose HoneyTrap, a novel deceptive LLM defense framework leveraging collaborative defenders to counter jailbreak attacks. It integrates four defensive agents, Threat Interceptor, Misdirection Controller, Forensic Tracker, and System Harmonizer, each performing a specialized security role and collaborating to complete a deceptive defense. To ensure a comprehensive evaluation, we introduce MTJ-Pro, a challenging multi-turn progressive jailbreak dataset that combines seven advanced jailbreak strategies designed to gradually deepen attack strategies across multi-turn attacks. Besides, we present two novel metrics: Mislead Success Rate (MSR) and Attack Resource Consumption (ARC), which provide more nuanced assessments of deceptive defense beyond conventional measures. Experimental results on GPT-4, GPT-3.5-turbo, Gemini-1.5-pro, and LLaMa-3.1 demonstrate that HoneyTrap achieves an average reduction of 68.77
