AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Learning-to-Defer (L2D) enables hybrid decision-making by routing inputs either to a predictor or to external experts. While promising, L2D is highly vulnerable to adversarial perturbations, which can not only flip predictions but also manipulate deferral decisions. Prior robustness analyses focus solely on two-stage settings, leaving open the end-to-end (one-stage) case where predictor and allocation are trained jointly. We introduce the first framework for adversarial robustness in one-stage L2D, covering both classification and regression. Our approach formalizes attacks, proposes cost-sensitive adversarial surrogate losses, and establishes theoretical guarantees including ℋ, (ℛ, ℱ), and Bayes consistency. Experiments on benchmark datasets confirm that our methods improve robustness against untargeted and targeted attacks while preserving clean performance.