AIにより推定されたラベル
ポイズニング プライバシー保護手法 プロンプトインジェクション
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Fine-tuning large language models (LLMs) with local data is a widely adopted approach for organizations seeking to adapt LLMs to their specific domains. Given the shared characteristics in data across different organizations, the idea of collaboratively fine-tuning an LLM using data from multiple sources presents an appealing opportunity. However, organizations are often reluctant to share local data, making centralized fine-tuning impractical. Federated learning (FL), a privacy-preserving framework, enables clients to retain local data while sharing only model parameters for collaborative training, offering a potential solution. While fine-tuning LLMs on centralized datasets risks data leakage through next-token prediction, the iterative aggregation process in FL results in a global model that encapsulates generalized knowledge, which some believe protects client privacy. In this paper, however, we present contradictory findings through extensive experiments. We show that attackers can still extract training data from the global model, even using straightforward generation methods, with leakage increasing as the model size grows. Moreover, we introduce an enhanced attack strategy tailored to FL, which tracks global model updates during training to intensify privacy leakage. To mitigate these risks, we evaluate privacy-preserving techniques in FL, including differential privacy, regularization-constrained updates and adopting LLMs with safety alignment. Our results provide valuable insights and practical guidelines for reducing privacy risks when training LLMs with FL.