AIにより推定されたラベル
セキュリティ分析 LLMの安全機構の解除 プロンプトインジェクション
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The integration of large language models (LLMs) into cyber security applications presents both opportunities and critical safety risks. We introduce CyberLLMInstruct, a dataset of 54,928 pseudo-malicious instruction-response pairs spanning cyber security tasks including malware analysis, phishing simulations, and zero-day vulnerabilities. Our comprehensive evaluation using seven open-source LLMs reveals a critical trade-off: while fine-tuning improves cyber security task performance (achieving up to 92.50 accuracy on CyberMetric), it severely compromises safety resilience across all tested models and attack vectors (e.g., Llama 3.1 8B’s security score against prompt injection drops from 0.95 to 0.15). The dataset incorporates diverse sources including CTF challenges, academic papers, industry reports, and CVE databases to ensure comprehensive coverage of cyber security domains. Our findings highlight the unique challenges of securing LLMs in adversarial domains and establish the critical need for developing fine-tuning methodologies that balance performance gains with safety preservation in security-sensitive domains.