AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
As technology grows and evolves rapidly, it is increasingly clear that mobile devices are more commonly used for sensitive matters than ever before. A need to authenticate users continuously is sought after as a single-factor or multi factor authentication may only initially validate a user, which does not help if an impostor can bypass this initial validation. The field of touch dynamics emerges as a clear way to non intrusively collect data about a user and their behaviors in order to develop and make imperative security related decisions in real time. In this paper we present a novel dataset consisting of tracking 25 users playing two mobile games Snake.io and Minecraft each for 10 minutes, along with their relevant gesture data. From this data, we ran machine learning binary classifiers namely Random Forest and K Nearest Neighbor to attempt to authenticate whether a sample of a particular users actions were genuine. Our strongest model returned an average accuracy of roughly 93 showing touch dynamics can differentiate users effectively and is a feasible consideration for authentication schemes. Our dataset can be observed at https://github.com/zderidder/MC-Snake-Results