AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
With the increasing application value of machine learning, the intellectual property (IP) rights of deep neural networks (DNN) are getting more and more attention. With our analysis, most of the existing DNN watermarking methods can resist fine-tuning and pruning attack, but distillation attack. To address these problem, we propose a new DNN watermarking framework, Unified Soft-label Perturbation (USP), having a detector paired with the model to be watermarked, and Customized Soft-label Perturbation (CSP), embedding watermark via adding perturbation into the model output probability distribution. Experimental results show that our methods can resist all watermark removal attacks and outperform in distillation attack. Besides, we also have an excellent trade-off between the main task and watermarking that achieving 98.68 while only affecting the main task accuracy by 0.59