AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Large Language Models (LLMs) have demonstrated strong capabilities in various code intelligence tasks. However, their effectiveness for Android malware analysis remains underexplored. Decompiled Android malware code presents unique challenges for analysis, due to the malicious logic being buried within a large number of functions and the frequent lack of meaningful function names. This paper presents CAMA, a benchmarking framework designed to systematically evaluate the effectiveness of Code LLMs in Android malware analysis. CAMA specifies structured model outputs to support key malware analysis tasks, including malicious function identification and malware purpose summarization. Built on these, it integrates three domain-specific evaluation metrics (consistency, fidelity, and semantic relevance), enabling rigorous stability and effectiveness assessment and cross-model comparison. We construct a benchmark dataset of 118 Android malware samples from 13 families collected in recent years, encompassing over 7.5 million distinct functions, and use CAMA to evaluate four popular open-source Code LLMs. Our experiments provide insights into how Code LLMs interpret decompiled code and quantify the sensitivity to function renaming, highlighting both their potential and current limitations in malware analysis.