AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Minimum distortion steganography is currently the mainstream method for modification-based steganography. A key issue in this method is how to define steganographic distortion. With the rapid development of deep learning technology, the definition of distortion has evolved from manual design to deep learning design. Concurrently, rapid advancements in image generation have made generated images viable as cover media. However, existing distortion design methods based on machine learning do not fully leverage the advantages of generated cover media, resulting in suboptimal security performance. To address this issue, we propose GIFDL (Generated Image Fluctuation Distortion Learning), a steganographic distortion learning method based on the fluctuations in generated images. Inspired by the idea of natural steganography, we take a series of highly similar fluctuation images as the input to the steganographic distortion generator and introduce a new GAN training strategy to disguise stego images as fluctuation images. Experimental results demonstrate that GIFDL, compared with state-of-the-art GAN-based distortion learning methods, exhibits superior resistance to steganalysis, increasing the detection error rates by an average of 3.30