AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Mitigating Denial-of-Service (DoS) attacks is vital for online service security and availability. While machine learning (ML) models are used for DoS attack detection, new strategies are needed to enhance their performance. We suggest an innovative method, combinatorial fusion, which combines multiple ML models using advanced algorithms. This includes score and rank combinations, weighted techniques, and diversity strength of scoring systems. Through rigorous evaluations, we demonstrate the effectiveness of this fusion approach, considering metrics like precision, recall, and F1-score. We address the challenge of low-profiled attack classification by fusing models to create a comprehensive solution. Our findings emphasize the potential of this approach to improve DoS attack detection and contribute to stronger defense mechanisms.