AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The COVID-19 pandemic and other ongoing health crises have underscored the need for prompt healthcare services worldwide. The traditional healthcare system, centered around hospitals and clinics, has proven inadequate in the face of such challenges. Intelligent wearable devices, a key part of modern healthcare, leverage Internet of Things technology to collect extensive data related to the environment as well as psychological, behavioral, and physical health. However, managing the substantial data generated by these wearables and other IoT devices in healthcare poses a significant challenge, potentially impeding decision-making processes. Recent interest has grown in applying data analytics for extracting information, gaining insights, and making predictions. Additionally, machine learning, known for addressing various big data and networking challenges, has seen increased implementation to enhance IoT systems in healthcare. This chapter focuses exclusively on exploring the hurdles encountered when integrating ML methods into the IoT healthcare sector. It offers a comprehensive summary of current research challenges and potential opportunities, categorized into three scenarios: IoT-based, ML-based, and the implementation of machine learning methodologies in the IoT-based healthcare industry. This compilation will assist future researchers, healthcare professionals, and government agencies by offering valuable insights into recent smart healthcare advancements.